Optomechanical analogues of spacetime superpositions

<u>Germain Tobar</u>¹, Joshua Foo³, Sofia Qvarfort², and Magdalena Zych¹

¹Stockholm University, Roslagstullsbacken 21, Stockholm, Sweden
²Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg
12, SE-106 91 Stockholm, Sweden
³Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

We develop of an experimental proposal to simulate the model for spacetime superpositions proposed by Foo, Arabaci, Zych, and Mann in Phys. Rev. Lett. 129, 181301 (2022), using an optomechnical experiment. The idea is to create a superposition of boundary conditions, which is the core feature of the proposed quantum gravitational model, in a laboratory experiment. This project will in particular explore what scenarios can be implemented by preparing one mirror of an optical cavity in a spatial superposition reffered to as an optomechanical cat-state

The Knut and Alice Wallenberg foundation through a Wallenberg Academy Fellowship No. 2021.0119. The General Sir John Monash Foundation.

- that would in turn create a superposition of cavity sizes.