Many-body physics with Fermions in an Optical Box

Nir Navon
Yale University, Prospect Street, New Haven, USA

For the past two decades harmonically trapped ultracold atomic gases have been used with great success to study fundamental many-body physics in flexible experimental settings. However, the resulting gas density inhomogeneity in those traps has made it challenging to study paradigmatic uniform-system physics (such as critical behavior near phase transitions) or complex quantum dynamics. The realization of homogeneous quantum gases trapped in optical boxes has marked a milestone in quantum simulation with ultracold atoms [1]. These textbook systems have proved to be a powerful playground by simplifying the interpretation of experimental measurements, by making more direct connections to theories of the many-body problem that generally rely on the translational symmetry of the system, and by altogether enabling previously inaccessible experiments.

I will present a series of experiments with ultracold fermions trapped in a box of light [25]. First, I will present two studies of stability problems: the spin-1/2 Fermi gas with repulsive contact interactions [2] and the three-component Fermi gas with spin-population imbalance [3]. Next, I will show the first observation of the Joule-Thomson effect in Fermi systems [4]. Finally, I will show how properties of quasiparticles can be modified by a dressing field; in our case, Fermi polarons dressed with an rf field [5]. These studies have led to some surprising results, highlighting how spatial homogeneity not only simplifies the connection between experiments and theory, but can also unveil unexpected outcomes.
[1] N. Navon, R.P. Smith, Z. Hadzibabic, Nature Phys. 17, 1334 (2021)
[2] Y. Ji et al., Phys. Lev. Lett 129, 203402 (2022)
[3] G.L. Schumacher et al., arXiv:2301.02237
[4] Y. Ji et al., Phys. Lev. Lett 132, 153402 (2024)
[5] F.J. Vivanco et al., arXiv:2308.05746

