Experimentally probing Landauer's principle in the quantum many-body regime

<u>Stefan Aimet</u>¹, Mohammadamin Tajik², João Sabino², Gabrielle Tournaire^{1,3}, Spyros Sotiriadis^{1,4}, Giacomo Guarnieri^{1,5}, Philipp Schüttelkopf², Jörg Schmiedmayer², and Jens Eisert¹

 ¹Dahlem Centre for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
²Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
³Department of Physics and Astronomy, and Stewart Blusson Quantum Matter Institute, University of British Columbia, V6T1Z1 Vancouver, Canada
⁴Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion, Greece
⁵Dipartimento di Fisica, Università di Pavia, 27100 Pavia, Italy

Landauer's principle establishes a bridge between information theory and thermodynamics by fundamentally relating the erasure of a single bit of information to a minimum amount of heat dissipation. While extensively explored in the context of few-body quantum systems, the question arises whether this insight can be extended and potentially leveraged in complex quantum many-body systems, where thermodynamics emerges as an effective coarse-grained description. This talk aims to present the first experimental measurement of Landauer's principle in a quantum field simulator consisting of two coupled one-dimensional ultra-cold Bose gases. We characterized (generalized) entropy production along a global mass quench from a Klein-Gordon to a Luttinger liquid model. Additionally, we may briefly discuss theoretical work on the quantum thermodynamics of local quantum quenches in the many-body domain.