Emergence of constructor-based irreversibility in quantum systems

Chiara Marletto^{1,2,3,4}, Vlatko Vedral^{1,2,3,4}, Laura Tamara Knoll^{5,6}, Fabrizio Piacentini⁵, Ettore Bernardi⁵, Enrico Rebufello⁵, Alessio Avella⁵, Marco Gramegna⁵, Ivo Pietro Degiovanni^{5,7}, and <u>Marco Genovese^{5,7}</u>

 ¹Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK ²Fondazione ISI, Via Chisola 5, I-10126 Torino, Italy
³Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
⁴Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
⁵Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino, Italy ⁶DEILAP-UNIDEF, CITEDEF-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires, Argentina
⁷INFN, sezione di Torino, via P. Giuria 1, I-10125 Torino, Italy

The emergence of irreversibility from time symmetric physical laws is a central problem in contemporary physics. Here we present an innovative take on this topic adopting the recently proposed constructor theory framework [1,2], in which irreversibility is expressed as the requirement that a task is possible, while its inverse is not. We prove the compatibility of such constructor-based irreversibility with quantum theory's time-reversal symmetric laws, using a dynamical model based on the universal quantum homogenizer. We also test the physical realizability of this model by means of an experimental demonstration exploiting high-quality single-photon qubits [3].

- [1] D. Deutsch, Constructor theory, Synthese 190, 4331 (2013).
- [2] D. Deutsch and C. Marletto, Constructor theory of information, Proc. R. Soc. A 471, 20140540 (2015).
- [3] C. Marletto et al., Emergence of Constructor-Based Irreversibility in Quantum Systems: Theory and Experiment, Phys. Rev. Lett. 128, 080401 (2022).