Dynamically assisted tunneling in the impulse regime

Christian Kohlfürst¹, Friedemann Queisser^{1,2}, and Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany

²Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

We study the enhancement of tunneling through a potential barrier V(x) by a time-dependent electric field with special emphasis on pulse-shaped vector potentials such as $A_x(t) = A_0/\cosh^2(\omega t)$. In addition to the known effects of pre-acceleration and potential deformation already present in the adiabatic regime, as well as energy mixing in analogy to the Franz-Keldysh effect in the non-adiabatic (impulse) regime, the pulse $A_x(t)$ can enhance tunneling by "pushing" part of the wave-function out of the rear end of the barrier. Besides the natural applications in condensed matter and atomic physics, these findings could be relevant for nuclear fusion, where pulses $A_x(t)$ with $\omega = 1$ keV and peak field strengths of 10^{16} V/m might enhance tunneling rates significantly.

- [1] F. Queisser and R. Schützhold, Phys. Rev. C 100, (2019), 041601(R)
- [2] C. Kohlfürst, F. Queisser and R. Schützhold, Phys. Rev. Research 3, (2021), 033153