Volkov-Pankratov states in topological graphene nanoribbons

T.L. van den Berg¹, <u>A. De Martino²</u>, M.R. Calvo³, and D. Bercioux^{1,4}

¹Donostia International Physics Center, Donostia-San Sebastián, Spain ²Department of Mathematics, City, University of London, London, United Kingdom ³Departamento de Fisica Aplicada, Universidad de Alicante, Alicante, Spain ⁴IKERBASQUE, Basque Foundation of Science, Bilbao, Spain

In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this talk I will show that, in the presence of intrinsic spin-orbit coupling smoothly modulated near the system edges, graphene nanoribbons host Volkov-Pankratov states in addition to the topologically protected helical states. This result is obtained by means of two complementary methods, one based on the effective low-energy Dirac equation description and the other on a fully numerical tight-binding approach, with excellent agreement between the two. I will then briefly discuss how transport measurements might reveal the presence of Volkov-Pankratov states, and possible graphene-like structures in which such states might be observed.