Quantum Energy Lines and the optimal output ergotropy problem

Salvatore Tirone¹, Raffaele Salvia¹, and Vittorio Giovannetti^{1,2,3}

¹Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, Italy ²NEST - National Enterprise for nanoScience and nanoTechnology, Piazza San Silvestro, 12 Pisa, Italy ³Istituto Nanoscienze-CNR, I-56127, Pisa, Italy

We study the transferring of useful energy (work) along a transmission line that allows for partial preservation of quantum coherence. As a figure of merit we adopt the maximum values that ergotropy, total ergotropy, and non-equilibrium free-energy attain at the output of the line for an assigned input energy threshold. For Phase-Invariant Bosonic Gaussian Channels (BGCs) models, we show that coherent inputs are optimal. For (one-mode) not Phase-Invariant BGCs we solve the optimization problem under the extra restriction of Gaussian input signals.