Topology-controlled macroscopic quantum coherent effects in multi-terminal Andreev interferometers

Pavel E. Dolgirev¹, Mikhail S. Kalenkov², and Andrei D. Zaikin^{2,3}

¹Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA ²I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, 119991 Moscow, Russia

Proximity induced long range quantum coherence of electrons in multi-terminal voltage-driven hybrid normal-superconducting (NS) nanostructures may result in a non-trivial interplay between topology-dependent Josephson and Aharonov-Bohm effects. Further intriguing phenomena emerge due to the combination of quantum coherence and electron-hole asymmetry generated by the mechanism of sequential Andreev reflection at different NS interfaces [1]. In this talk I will elucidate several recent developments [2-4] associated with the above effects. In particular, I will demonstrate that a trade-off between voltage-dependent Josephson (I_J) and Aharonov-Bohm (I_{AB}) currents may yield a novel topology-controlled ϕ_0 -junction behavior [2]. An even richer physical picture emerges if one accounts for the competition between stimulation of I_J due to non-equilibrium effects and reduction of both I_J and I_{AB} caused by quantum dephasing of quasiparticles. Finally, I will address quantum coherent topology-dependent oscillations of the thermopower in Andreev interferometers [4] and formulate predictions possibly resolving several long-standing experimental puzzles. Our results may be employed for engineering superconducting nanocircuits with controlled quantum properties.

- [1] M.S. Kalenkov and A.D. Zaikin, Phys. Rev. B95 (2017) 024518.
- [2] P.E. Dolgirev, M.S. Kalenkov, and A.D. Zaikin, Phys. Rev. B97 (2018) 054521.
- [3] P.E. Dolgirev, M.S. Kalenkov, and A.D. Zaikin, Sci. Rep. 9 (2019) 1301.
- [4] P.E. Dolgirev, M.S. Kalenkov, and A.D. Zaikin, Phys. Status Solidi RRL 13 (2019) 1800252.

³Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany