Irreversibility and symmetry principles in quantum theory

David Jennings

Oxford University, Clarendon Labs, Dept. of Physics, Oxford, United Kingdom

The concept of irreversibility lies at the heart of physics and can often be a subtle thing to pin down. In recent years it has acquired new guises that are motivated by informationtheoretic aims. For example, in the theory of entanglement intrinsically quantum-mechanical correlations may be utilised to achieve tasks such as quantum teleportation. The use of this entanglement results in its consumption, and a form of irreversibility that can be quantified and studied in a precise manner. Symmetry principles are powerful and unifying concepts in modern quantum physics, however they are normally associated with the conservation of quantities, for example via Noether's theorem. Here I will discuss a novel framework that is motivated by the theory of entanglement. This general framework allows us to study irreversibility in the quantum degrees of freedom of a multipartite system constrained by local or global symmetry principles. The approach leads to a range of results, including a novel information-theoretic perspective on gauge theories, and connections with recent work on quantum thermodynamics. In particular I will present a framework for quantum thermodynamics based on simple physical principles of stability and symmetry, and which admits a complete entropic description.