Closed quantum Master equations for energy transfer in Light-Harvesting complex and multi-exciton dynamics

Shmuel Gurvitz¹, Gennady Berman^{2,3}, and Richard Sayre^{2,3}

¹Weizmann Institute, Herzl, Rehovot 76100, Israel ²Bioscience Division, B-11, Los Alamos National Laboratory ³New Mexico Consortium, Los Alamos, NM, 87544, USA

Usually the study of energy-transfer in the Light Harvesting Complex is limited by a singleexciton motion along the antenna. Starting from the many-body Schrodinger equation, we derived the Lindblad-type Master equations describing the cyclic exciton-electron dynamics of the Light Harvesting Complex, due to charge-restoration of a donor 1]. These equations, which resemble the Master equations for electric current in mesoscopic systems [2], go beyond the single-exciton description by accounting the multi-exciton states accumulated in the antenna, as well as the charge-separation, fluorescence and initial photo-absorption. Although these effects take place on very different time-scales, we demonstrate that their account is necessary for consistent description of the exciton dynamics. We applied our results for evaluation of the energy (exiton) current and the (damaging) fluorescent current as a function of light-intensity.

- [1] Shmuel Gurvitz, Gennady P. Berman and Richard T. Sayre, arXiv:1706.01958.
- [2] Shmuel Gurvitz, Front. Phys. 12 (2017) 120303.