Propagation of charge and energy density in disordered interacting quantum wires - ergodic phases with subdiffusive dynamics?

Soumya Bera³, Giuseppe DeTomasi², Felix Weiner¹, and Ferdinand Evers¹

¹Institut of Theoretical Physics, Universitaetsstr. 1, 93049 Regensburg, Germany ²Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Straße 38, 01187-Dresden, Germany

³Department of Physics IIT Bombay, Infinite Corridor, Academic Section, IIT Area, Powai, Mumbai, Maharashtra 400076, India

We investigate charge relaxation in the spin-less disordered fermionic Hubbard chain (t-V model). Our observable is the time-dependent density propagator, $\Pi_{\varepsilon}(x, t)$, calculated in windows of different energy density, ε , of the many-body Hamiltonian.

The width $\Delta x_{\varepsilon}(t)$ of Π_{ε} : (x, t) exhibits a behavior that is best described by an effective exponent: $\beta_{\varepsilon}(t)=d\ln\Delta x_{\varepsilon}(t)/d\ln t$. While for diffusive dynamics the exponent equals 1/2, an impressive body of numerical data has been accumulated that currently is interpreted as suggesting a subdiffusive behavior $\beta_{\varepsilon}(t) \leq 1/2$ in large regions of phase space.

Our numerical work does not lend support to this interpretation, because we observe that β_{ε} depends strongly on the system size L at all investigated parameter combinations. Specifically, we do not find a region in phase space that exhibits subdiffusive dynamics in the sense that $\beta < 1/2$ in the thermodynamic limit. Instead, subdiffusion may well be transient, giving way eventually to conventional diffusive behavior, $\beta = 1/2$.

Interestingly, (transient) subdiffusion $0 < \beta_{\varepsilon}(t) \leq 1/2$, coexists with an enhanced probability for returning to the origin, $\Pi_{\varepsilon}(0,t)$, decaying much slower than $1/\Delta x_{\varepsilon}(t)$. Correspondingly, the spatial decay of $\Pi_{\varepsilon}(x,t)$ is far from Gaussian, i.e. exponential or even slower.

[1] https://arxiv.org/abs/1610.03085