Janne Ruostekoski1, Gaetan Facchinetti1,2, and Stewart Jenkins1

1University of Southampton, University Road, Southampton, United Kingdom
2Ecole Normale Superieure de Cachan, Cachan, France

We demonstrate how cold dense atomic ensembles can respond to light differently from thermal atoms. In cold samples strong light-mediated resonant dipole-dipole interactions between atoms can be utilized in a control and storage of light. The method is based on a high-fidelity preparation of a collective atomic excitation in a single correlated subradiant eigenmode in a lattice. We demonstrate how a simple phenomenological model captures the qualitative features of the dynamics and sharp transmission resonances that may find applications in sensing.