Closed quantum Master equations for energy transfer in Light-Harvesting complex and multi-exciton dynamics

Shmuel Gurvitz1, Gennady Berman2,3, and Richard Sayre2,3

1Weizmann Institute, Herzl, Rehovot 76100, Israel
2Bioscience Division, B-11, Los Alamos National Laboratory
3New Mexico Consortium, Los Alamos, NM, 87544, USA

Usually the study of energy-transfer in the Light Harvesting Complex is limited by a single-exciton motion along the antenna. Starting from the many-body Schrodinger equation, we derived the Lindblad-type Master equations describing the cyclic exciton-electron dynamics of the Light Harvesting Complex, due to charge-restoration of a donor \cite{1}. These equations, which resemble the Master equations for electric current in mesoscopic systems \cite{2}, go beyond the single-exciton description by accounting the multi-exciton states accumulated in the antenna, as well as the charge-separation, fluorescence and initial photo-absorption. Although these effects take place on very different time-scales, we demonstrate that their account is necessary for consistent description of the exciton dynamics. We applied our results for evaluation of the energy (exiton) current and the (damaging) fluorescent current as a function of light-intensity.