Ohmic contacts are crucial elements of electron optics that have not received a clear theoretical description yet. We propose a model of an Ohmic contact as a piece of metal of the finite capacitance C attached to a quantum Hall edge. It is shown that charged quantum Hall edge states may have weak coupling to neutral excitations in an Ohmic contact. Consequently, despite being a reservoir of neutral excitations, an Ohmic contact is not able to efficiently equilibrate edge states if its temperature is smaller than $\hbar \Omega_c$, where Ω_c is the inverse RC time of the contact. This energy scale for a floating contact may become as large as the single-electron charging energy e^2/C.