Prethermalisation and thermalisation in long-range quantum spin systems

Michael Kastner

National Institute for Theoretical Physics, 10 Marais Street, Stellenbosch 7600, South Africa

Institute of Theoretical Physics, Stellenbosch University, Stellenbosch 7600, South Africa

Recent studies of isolated quantum systems have led to an improved understanding of conditions necessary and/or sufficient for thermalisation to occur (see [1] and references therein). Less is known about the time scales on which thermalisation takes place. Here, analytic results on the relevant time scales are reported for long-range interacting Ising systems on one-, two-, and three-dimensional lattices [2]. The results have applications to experiments on ultracold polar molecules, and they are presently used for refined benchmarking of trapped-ion quantum simulators.

Different to the exponential relaxation of expectation values known from the nearest-neighbour Ising chain, we find stretched or compressed exponential decay in time towards the corresponding equilibrium values. For sufficiently long-ranged interactions, a wide separation of time scales occurs, leading to pronounced prethermalisation plateaus of correlation functions prior to their relaxation to equilibrium. We discuss the implications of these findings for trapped-ion quantum simulation [4].