Quantum decoherence of Cooper pairs

Andrei Zaikin1,2 and Andrew Semenov2

1Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
2I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, 119991, Moscow, Russia

We argue that electron-electron interactions yield dephasing of Cooper pairs penetrating from a superconductor (S) into a diffusive normal metal (N). At low temperatures this phenomenon imposes fundamental limitations on the proximity effect in NS hybrids restricting the penetration length of superconducting correlations into the N-metal to a temperature independent value and thereby defining the new length scale – decoherence length for Cooper pairs.

We evaluate the subgap conductance of NS hybrids in the presence of electron-electron interactions \cite{Sem12} and demonstrate that this new fundamental decoherence length can be directly extracted from conductance measurements in such structures. Our results agree qualitatively with earlier experimental observations \cite{Dik01} showing that the low temperature magnetoconductance of NS structures is determined by phase coherent electron paths with a typical size restricted by the temperature independent dephasing length rather than by the thermal length diverging in the low temperature limit. We also analyze the effect of electron-electron interactions on the critical Josephson current in diffusive hybrid SNS structures and demonstrate \cite{Sem07} that this current gets exponentially suppressed even at zero temperature provided the thickness of the N-layer exceeds the dephasing length for Cooper pairs. This our prediction appears to be consistent with recent experimental observations \cite{Mot07}.

It is remarkable that the Cooper pair dephasing length established both for NS- and SNS-systems up to a numerical prefactor coincides with zero temperature decoherence length obtained within a totally different theoretical framework \cite{Gol98} for a different physical quantity – weak localization correction to the normal metal conductance. This agreement emphasizes fundamental nature of low temperature dephasing by electron-electron interactions which universally occurs in different types of disordered conductors.

3 A.G. Semenov and A.D. Zaikin, in preparation.
4 M. Möttönen, private communication.