Fluctuation dissipation phenomenology away from equilibrium

Doron Cohen

Ben-Gurion University, Physics Department, Beer-Sheva 84105, Israel

The fluctuation dissipation phenomenology, in essence, is a relation $A = D/T$ that connects the rate of energy absorption to its diffusive spreading, where T is the canonical temperature. We explain how this relation can be generalized in circumstances away from equilibrium. In [1] we propose a minimal Fokker-Planck theory for the thermalization of mesoscopic subsystems, without having any baths. In [2,3] the flow of energy from a work agent to a bath is mediated by a “sparse” system whose non-equilibrium steady state has “glassy” features. In both cases we explain how to formulate the fluctuation dissipation relation, and what “temperature” to use.