The 0.7-anomaly in quantum point contacts: Evidence for a Nozières' Fermi liquid

Florian Bauer^{1, 2}, Jan Heyder^{1, 2}, David Borowski², Enrico Schubert², Daniela Taubert², Dieter Schuh³, Werner Wegscheider⁴, Stefan Ludwig², and Jan von Delft^{1, 2}

¹Arnold Sommerfeld Center, Ludwig-Maximilians-Universität München, Theresienstr. 37, Munich, Germany

²Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstr. 37, Munich, Germany

³Institut für Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany ⁴Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland

We present a microscopic theory for the 0.7-anomaly in the conductance of a quantum point contact, based on a one-dimensional model with a local interaction and a smooth potential barrier. Using the functional renormalization group to calculate the conductance $G(V_g, B)$ as function of gate voltage and magnetic field at zero temperature, we find qualitative agreement with previous and new experiments. Similar calculations for a one-dimensional quantum dot show that the low-energy phenomelogy of the 0.7-anomaly is related to that of the Kondo effect in quantum dots, in that both exhibit interaction-enhanced spin-fluctuations in regions of low charge density that can be described using a Fermi liquid theory a la Nozières. This observation leads to the prediction that the ratio T^*/B^* should be independent of gate voltage for both the Kondo effect and the 0.7-anomaly, where T^* and B^* are the characteristic temperature and magnetic field scales that govern the leading dependence of the conductance on temperature and magnetic field, respectively. We present new experimental data for the 0.7-anomaly that confirm this prediction and hence provide support for the Fermi liquid description proposed here.