Towards hybrid quantum circuits: Strong coupling of a spin ensemble to a superconducting resonator

Y. Kubo¹, C. Grezes¹, F. R. Ong¹, P. Bertet¹, <u>D. Vion</u>¹, V. Jacques², D. Zheng², A. Dréau², J.-F. Roch², A. Auffeves³, F. Jelezko⁴, J. Wrachtrup⁴, M. F. Barthe⁵, P. Bergonzo⁶, and D. Esteve¹

¹Quantronics group, CEA-Saclay, 91191 Gif-sur-Yvette cedex, France
²LPQM (CNRS UMR 8537), ENS de Cachan, 94235 Cachan, France
³Institut Néel–CNRS-UJF Grenoble, France
⁴Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
⁵CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans, France

⁶CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette, France

It seems appealing to combine artificial atoms like supeconducting qubits and natural quantum systems in 'hybrid' quantum circuits that would exhibit long coherence times while allowing rapid quantum state manipulation. The two types of object would be strongly coupled to a superconducting resonator used as a quantum bus. We report here [1] a first steps towards this architecture: the realization of a quantum circuit in which an ensemble of electronic spins is coupled to a frequency tunable superconducting resonator. The spins are nitrogen-vacancy centers in a diamond crystal. The achievement of strong coupling is manifested by the appearance of a vacuum Rabi splitting in the transmission spectrum of the resonator when its frequency is tuned through the nitrogen-vacancy center electron spin resonance. We also observe in the time-domain the exchange of a coherent state between the resonator and the spins.

[1] Y. Kubo et al., Phys. Rev. Lett. 105, 140502 (2010)